
9781119093107-bc02.indd BC41 September 15, 2015 7:56 PM

BONUS
PROJECT

2
Spline Drawing

Program
A spline is a smooth‐looking line that bends around or
between a number of locations called control points. You make a
spline with math. The good news is that the Tkinter module
does all the math for you.

You’re going to draw with a Tkinter widget called a Canvas.
In the process of drawing and moving around control points,
you read about coordinates.

BC42 Python For Kids For Dummies

9781119093107-bc02.indd BC42 September 15, 2015 7:56 PM

Set Up
In the end, your application will

1. Place control points.

2. Draw a spline defined by those control points.

3. Move control points that are already there and add new con-
trol points.

4. Vary the smoothness of the spline.

The first thing to do is to set up a skeleton for the rest of your
coding. To cut down on how much you need to type, don’t import
the whole of Tkinter. Instead, import just those objects that
you’re using. There is a simple syntax to import only specified
objects.

If you want to import an object called object from a module
called module, you type this:

from module import object

To import multiple objects, separate them by a comma:

from module import object1, object2

For example, if you’re going to use the Tkinter Frame widget,
you’d type this:

from Tkinter import Frame

When you import an object like this, you can refer to the object’s
name directly. So, after you import Frame (like the code just
before), you refer to it just as Frame (not Tkinter.Frame).

The * character lets you import every object from a module.
Don’t! It means that you’re polluting (messing up) your namespace
with object names from the Tkinter module. It makes it harder

BC43 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC43 September 15, 2015 7:56 PM

to understand your code (and can lead to object‐naming
collisions).

The character * is called a wildcard because it stands for
everything.

You’re probably used to this by now, but just in case, here are
some things you need to get started for this project:

1. Create a new file and call it spliner.py.

2. Create Import, Class, and Main sections.

3. In the Import section, import the Frame widget from
Tkinter:

from Tkinter import Frame

4. In the Class section, define a class called SplineDisplay.
Make the class inherit from Frame.

class SplineDisplay(Frame):

5. Write a class docstring for SplineDisplay.

 """

 This class will display the spline

 """

6. Create a constructor method for SplineDisplay. Have it
call Frame’s constructor method.

This initializes the Frame widget. To do so, Frame’s construc-
tor needs to be told what the parent widget is. Pass that as
the second argument of the call. To pass this to the Frame’s
constructor, put a default argument for the parent widget in
SplineDisplay’s constructor: def __init__(self,
parent=None). Then, if you know what the parent widget
is, you can pass it when SplineDisplay is instantiated.

BC44 Python For Kids For Dummies

9781119093107-bc02.indd BC44 September 15, 2015 7:56 PM

If it isn’t, parent defaults to None and Tkinter will work out
the details for you.

 def __init__(self, parent=None):

 Frame.__init__(self, parent)

7. In the Main section, create an if __name__ ==
"__main__" code block.

if __name__ == "__main__":

8. Inside that code block, instantiate an instance of
SplineDisplay (display = SplineDisplay()) and call
the mainloop method of that instance.

 display = SplineDisplay()

 display.mainloop()

The code you end up with should look like this:

"""

Spliner.py

Draw and investigate a spline using Tkinter's Canvas

widget

"""

Imports Section

from Tkinter import Frame

Class Section

class SplineDisplay(Frame):

 """

 This class will display the spline

 """

 def __init__(self, parent=None):

 Frame.__init__(self, parent)

Main Section

if __name__ == "__main__":

 display = SplineDisplay()

 display.mainloop()

BC45 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC45 September 15, 2015 7:56 PM

If you’re persnickety, you might not like that there’s no docstring
for the constructor method. In this case, it’s okay not to have one.

Run the code now. An empty tk window should pop up when you
run this code. The tk window is a manageable size because you
haven’t called pack() on the display widget. If you had, since
Frame widgets are invisible, the window would be so small that it
would be difficult to find and close.

Flesh Out the Skeleton Application
To draw a decent‐sized window, you need

✓✓ To resize the widget display so it’s a pretty big frame.

✓✓ Something to draw on.

✓✓ A way to communicate from the program back to you. You did
that with print in other projects, but hey, you’re supposed to
be learning GUIs now so you’re gonna haffta print it out all GUI
style — with a Label.

To do these, make the following changes to the SplineDisplay
constructor:

1. Pack SplineDisplay.

For this to work, you have to import the constant BOTH from
Tkinter.

 self.pack(fill=BOTH, expand=True)

2. Add a Canvas widget as a child of SplineDisplay.

You can’t use any widget till you import it.

Import the widget Canvas from Tkinter in the Imports sec-
tion. When you create the canvas you want it to be a child of
the SplineDisplay widget. However, that’s a problem

BC46 Python For Kids For Dummies

9781119093107-bc02.indd BC46 September 15, 2015 7:56 PM

because the SplineDisplay widget doesn’t actually exist.
You’re creating the Canvas widget in the course of creating a
SplineDisplay instance. Therefore, you pass self (that is,
the instance of SplineDisplay that is being created) as the
parent widget when you create the Canvas widget. At the time
the Canvas widget is created, the variable self refers to
display, the instance of the SplineDisplay class being cre-
ated. (You named it display in earlier code.)

 self.canvas = Canvas(self)

3. Create two constants: CANVAS_WIDTH and CANVAS_HEIGHT.

These set the config options width and height of the
Canvas widget. You create these constants to avoid using
magic numbers in the code.

Magic numbers don’t have a meaning attached to them.

Create a Constants section to put them in:

Constants Section

CANVAS_WIDTH = 800

 CANVAS_HEIGHT = 600

Canvas widgets have two configuration options: width= and
height=. Setting values for these options sets the Canvas
widget’s width and height.

4. Use the constants you just defined to configure the Canvas
widget:

 self.canvas.config(width=CANVAS_WIDTH,

 height=CANVAS_HEIGHT)

5. Pack the Canvas widget so that it fills the space in its parent
widget: self.canvas.pack(fill=BOTH, expand=True).

 self.canvas.pack(fill=BOTH, expand=True)

BC47 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC47 September 15, 2015 7:56 PM

Your code will look something like this:

"""

Spliner.py

Draw and investigate a spline using Tkinter's Canvas

widget

"""

Imports Section

from Tkinter import Frame, Canvas, BOTH

Constants Section

CANVAS_WIDTH = 800

CANVAS_HEIGHT = 600

Class Section

class SplineDisplay(Frame):

 """This class will display the spline"""

 def __init__(self, parent=None):

 Frame.__init__(self, parent)

 self.pack(fill=BOTH, expand=True)

 self.canvas = Canvas(self)

 self.canvas.config(width=CANVAS_WIDTH,

 height=CANVAS_HEIGHT)

 self.canvas.pack(fill=BOTH, expand=True)

Main Section

if __name__ == "__main__":

 display = SplineDisplay(None)

 display.mainloop()

Did you remember to update the import to be from Tkinter
import Frame, Canvas, BOTH?

When you run this code, you should get a largish, gray window on
your screen.

BC48 Python For Kids For Dummies

9781119093107-bc02.indd BC48 September 15, 2015 7:56 PM

Add a readout Widget
Every spline needs control points that define it. Before you can put
down control points, you have to describe where they go. In this
section I explain how to describe where they go.

You’ll also track the movement of the mouse pointer and print out
details. You do that by hooking up a callback to run when the
"<Motion>" event is received. The reference to "<Motion>"
means to the mouse’s motion. Whenever you move your mouse
over the widget, it creates a "<Motion>" event.

Read more about the different types of Tkinter event at
http://effbot.org/tkinterbook/tkinter‐events‐and‐
bindings.htm.

1. Make a Label.

You’ll use Label to display the details of the "<Motion>"
events. Import Label and create an instance in an attribute
called readout. Set the text option to be "Readout Label"
and then pack the widget. Add the code for the label at the
bottom of the SplineDisplay __init__ method.

 self.readout = Label(self, text="Readout Label")

 self.readout.pack()

2. Create a new method stub in SplineDisplay called
track_mouse_motion.

3. Make it accept two arguments: self and event.

The first argument of a method always should be self.

In the method’s code, print the event that’s received. In the
next step you’re going to make this method into a callback.
When Tkinter invokes the callback, it passes a copy of the
event to it as the second argument.

 def track_mouse_motion(self, event):

 """Update the label to tell user about mouse motion"""

 print("got event: %s"%event)

http://effbot.org/tkinterbook/tkinter-events-and-bindings.htm
http://effbot.org/tkinterbook/tkinter-events-and-bindings.htm

BC49 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC49 September 15, 2015 7:56 PM

4. Bind the "<Motion>" event in the Canvas widget to the
new method stub.

When you link an event to a widget it’s called binding the event to
the widget.

You handle events more generally using the bind method of the
relevant widget. (All Tkinter widgets have a bind method.) You
pass the name of the event that you want to bind to the method
as the first argument, and pass the callback that should be
invoked as the second argument of the method.

 self.canvas.bind("<Motion>",

self.track_mouse_motion)

This is the revised code:

"""

Spliner.py

Draw and investigate a spline using Tkinter's Canvas

widget

"""

Imports Section

from Tkinter import Frame, Canvas, Label, BOTH

Constants Section

CANVAS_WIDTH = 800

CANVAS_HEIGHT = 600

Class Section

class SplineDisplay(Frame):

 """This class will display the spline"""

 def __init__(self, parent=None):

 Frame.__init__(self, parent)

 self.pack(fill=BOTH, expand=True)

 self.canvas = Canvas(self)

 self.canvas.config(width=CANVAS_WIDTH,

height=CANVAS_HEIGHT)

BC50 Python For Kids For Dummies

9781119093107-bc02.indd BC50 September 15, 2015 7:56 PM

 self.canvas.pack(fill=BOTH, expand=True)

 self.readout = Label(self, text="Readout Label")

 self.readout.pack()

 self.canvas.bind("<Motion>",

self.track_mouse_motion)

 def track_mouse_motion(self, event):

 """Update the label to tell user about mouse motion"""

 print("got event: %s"%event)

if __name__ == "__main__":

 display = SplineDisplay(None)

 display.mainloop()

When you run the code, make sure you can see IDLE’s Shell win-
dow. After you’ve done that, move the mouse across the canvas.
IDLE’s Shell should go nuts whenever the mouse moves. You
should see something like this in the readout: got event:
<Tkinter.Event instance at 0x7fe108041248> over and
over again in the IDLE Shell window.

That’s repeated hundreds or thousands of times, depending on
how energetic you’ve been with that mouse.

You can see from the printout that each event that the callback
receives is an instance of Tkinter.Event. (It says so.) From this
you can look up the Tkinter docs at at effbot.org (http://
effbot.org/tkinterbook) and New Mexico Tech’s Tkinter
reference (http://infohost.nmt.edu/tcc/help/pubs/
tkinter/web/index.html).

You can get more detailed info on Tkinter events quickly if you
start up the Python console and type from Tkinter import
Event and then print(Event.__doc__).

The docstring text goes on a bit. It actually has a lot of useful stuff
in there, which you can read about at your leisure.

http://effbot.org
http://effbot.org/tkinterbook/
http://effbot.org/tkinterbook/
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

BC51 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC51 September 15, 2015 7:56 PM

Track Your Mouse
To get a feel for what’s happening with your mouse, change the
printout line in track_mouse_motion to show these x and y
attributes. Your new track_mouse_motion method looks
like this:

 def track_mouse_motion(self, event):

 """Update the label to tell user about mouse motion"""

 print("got event with x: %s and y: %s"%(event.x, event.y))

When you run the file, you should get output in the Shell window
that looks like this:

>>> ================================ RESTART

================================

>>>

got event with x: 11 and y: 449

got event with x: 38 and y: 449

got event with x: 61 and y: 449

got event with x: 76 and y: 447

Notice that the readout changes when you move the mouse over
the window, and that it only changes when the mouse is over the
window. The values x and y are called coordinates. To draw any-
thing on the canvas, you need to tell Tkinter where in the can-
vas you want that thing drawn. You do that using these x and y
coordinates.

✓✓ The x coordinate describes how far from the left edge of the
widget the mouse pointer is.

✓✓ The y coordinate describes how far from the top edge of the
widget the mouse pointer is. This means that as you go down
the screen, the value y gets bigger.

First move the mouse around and see how these coordinates
change. Then, move the mouse pointer to each of the four corners
of the window and see what the coordinates are. Now you’re

BC52 Python For Kids For Dummies

9781119093107-bc02.indd BC52 September 15, 2015 7:56 PM

going to update the x and y attributes directly in the text label.
Then your GUI won’t need to rely on the Shell window.

1. Create a formatting template that prints out the values of
x and y.

The width of the window is 800 and its height is 600, so both
values will be three digits wide. (Just trust me on that.) In
Project 10 you saw how to leave a set amount of space in a
 formatting template. You do that here by using the %3i
 specifier in the formatting string twice.

READOUT_FORMAT = "Mouse pointer at x: %3i y:%3i"

2. In the track_mouse_motion callback, create a string by
plugging the event’s x and y attributes into the formatting
template.

 readout_text = READOUT_FORMAT%(event.x, event.y)

3. Use the config method of self.readout to set its text to
the string you just created and delete the earlier code in the
track_mouse_motion method.

 self.readout.config(text=readout_text)

There’s a slight problem with the alignment of the text in the
readout. By default, Tkinter uses a proportional font, which
means that the space taken up in the printout will vary a little.
Fix this problem by changing this to a fixed‐width font.

4. Import the module tkFont.

import tkFont

5. Just before you create self.readout in the constructor,
you set the font to use with the following code.

You can treat this as a bit of magic. It’s preparing a fixed‐width
font so that the output lines up right.

 fixed_font = tkFont.nametofont("TkFixedFont")

BC53 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC53 September 15, 2015 7:56 PM

6. On the next line, change the line creating self.readout
to the following.

In it, the option font= is telling Tkinter to use a specific font.

 self.readout = Label(self, text="Readout Label",

font=fixed_font)

7. Run it, sit back, and watch the fun.

There’s a new line in the Imports section:

import tkFont

I added this formatting string to the Constants section:

READOUT_FORMAT = "Mouse pointer at x: %3i y:%3i"

The SplineDisplay constructor has two changes:

 fixed_font = tkFont.nametofont("TkFixedFont")

 self.readout = Label(self, text="Readout Label", font=fixed_

font)

The new track_mouse_motion function looks like this:

 def track_mouse_motion(self, event):

 """Update the label to tell user about mouse motion"""

 readout_text = READOUT_FORMAT%(event.x, event.y)

 self.readout.config(text=readout_text)

You should have a large, empty, grey window. When you move
your mouse around in the window, the label widget should
change with you. When you’re on the left, x is a low number. As
you move to the right, x increases. How high can you make x go?
See Figure 2-1.

BC54 Python For Kids For Dummies

9781119093107-bc02.indd BC54 September 15, 2015 7:56 PM

Figure 2-1: Window with event.x and event.y as received by
track_mouse_motion.

Cartesian coordinates
and Cartesian dualism

When you are using two numbers to describe a location in this way you’re
using a Cartesian coordinate system. This system is named after French
philosopher René Descartes. He is known for landing on the Latin phrase
“cogito ergo sum.” It is translated to English as “I think, therefore I am.”
He arrived at his statement by doubting everything. He imagined that he
was Neo in The Matrix (or he would have, if he hadn’t died many centuries
before the film was made). For example, even though he could see stuff,
he doubted that it was actually there. He could have been hallucinating it.
He doubted everything until he found something that he was unable to
doubt. Can you guess what it is?

BC55 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC55 September 15, 2015 7:56 PM

Draw Your First Line
To draw a line on a canvas widget, you use the widget’s create_
line method. The create_line method has a heap of options.
The most important option is the first argument. The first argu-
ment is a list of coordinates. These coordinates are the control
points that set where the line is drawn.

The list is read off in x,y pairs. To draw a line from the point
where x = 0 and y = 0 to the point where x = 800 and
y = 600, you’d create a list [0, 0, 800, 600] (from the top‐
left corner to the bottom‐right corner of the Canvas widget).

To start, you’re going to draw a line somewhere random on the
canvas to another random ending point. Do it like this:

1. Import the random module.

import random

2. In the constructor method, create an attribute called
line_details.

You’ll use this attribute to print out information about the line.
Set it equal to the empty string.

 self.line_details = ""

He couldn’t doubt that he was doubting stuff! This is seen as an important
statement about our knowledge of what we know. The study of how we
know what we know is called epistemology. In Monty Python’s Pirahna
Brothers skit, one of the characters complains that “kids these days” have
their heads filled with Cartesian Dualism. That’s something else named
after Descartes. Cartesian Dualism proposes that we have a mind which is
separate from our body and the world of matter. He arrived at his formu-
lation of it as a consequence of his system of doubt.

BC56 Python For Kids For Dummies

9781119093107-bc02.indd BC56 September 15, 2015 7:56 PM

3. Create a method, called draw_random_line, that takes an
event as an argument.

Because the line is random, you won’t use the event. But
because you’ll set this as a callback, it needs to receive an
event argument, even though it doesn’t use it.

 def draw_random_line(self, event):

4. In the draw_random_line method, create two random inte-
gers between 0 and 800 (the two x coordinates) and two ran-
dom integers between 0 and 600 (the two y coordinates).

 x = random.randint(0, 800)

 y = random.randint(0, 600)

 x1 = random.randint(0, 800)

 y1 = random.randint(0, 600)

5. Create a list from these four integers: the first x, the first y,
the second x, the second y.

Even though these are in a set order (which suggests using a
tuple), you’re using a list. This is so that, if you want to, you
can later add points or change existing points.

 point_list = [x, y, x1, y1]

6. Call the create_line method on the canvas widget, pass-
ing this list of integers.

 self.canvas.create_line(point_list)

7. Create a "Line from" template to use to create the line_
details attribute.

It should add the starting and ending points.

8. Update the READOUT_FORMAT to add a %s at the start (where
the line details will go):

READOUT_FORMAT = "%s Mouse pointer at x: %3i y:%3i"

LINE_DETAILS_FORMAT = "Line from (%s,%s) to (%s,%s)"

BC57 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC57 September 15, 2015 7:56 PM

9. In the track_mouse_motion method, change the format for
the readout_text to insert the value in the line_details
attribute.

 readout_text = READOUT_FORMAT%(self.line_details,

event.x, event.y)

The readout widget tells you where the line’s supposed to go
from and to and where the mouse pointer is right now.

10. In the constructor, bind the event "<Button‐1>" to the new
draw_random_line method.

 self.canvas.bind("<Button‐1>", self.draw_random_line)

"<Button‐1>" is the event generated when the user clicks
the left mouse button. Each time you click the canvas, a new
line is drawn.

The revised code now looks like this:

"""

Spliner.py

Draw and investigate a spline using Tkinter's Canvas

widget

"""

Imports Section

from Tkinter import Frame, Canvas, Label, BOTH

import tkFont

import random

Constants Section

CANVAS_WIDTH = 800

CANVAS_HEIGHT = 600

READOUT_FORMAT = "%s Mouse pointer at x: %3i y:%3i"

LINE_DETAILS_FORMAT = "Line from (%s,%s) to (%s,%s)"

Class Section

class SplineDisplay(Frame):

 """This class will display the spline"""

 def __init__(self, parent=None):

 Frame.__init__(self, parent)

BC58 Python For Kids For Dummies

9781119093107-bc02.indd BC58 September 15, 2015 7:56 PM

 self.pack(fill=BOTH, expand=True)

 self.canvas = Canvas(self)

 self.canvas.config(width=CANVAS_WIDTH,

height=CANVAS_HEIGHT)

 self.canvas.pack(fill=BOTH, expand=True)

 fixed_font = tkFont.nametofont("TkFixedFont")

 self.readout = Label(self, text="Readout Label",

font=fixed_font)

 self.readout.pack()

 self.canvas.bind("<Motion>", self.track_mouse_motion)

 self.canvas.bind("<Button‐1>", self.draw_random_line)

 self.line_details = ""

 def draw_random_line(self, event):

 """ Draw a line on self.canvas between two random points

 within the canvas. """

 x = random.randint(0, 800)

 y = random.randint(0, 600)

 x1 = random.randint(0, 800)

 y1 = random.randint(0, 600)

 point_list = [x, y, x1, y1]

 self.canvas.create_line(point_list)

 self.line_details = LINE_DETAILS_FORMAT%(x, y, x1, y1)

 def track_mouse_motion(self, event):

 """Update the label to tell user about mouse motion"""

 readout_text = READOUT_FORMAT%(self.line_details,

event.x, event.y)

 self.readout.config(text=readout_text)

if __name__ == "__main__":

 display = SplineDisplay(None)

 display.mainloop()

11. Click once! Then move your mouse to one end of the line
you have created.

It might be tough to do if you have a high‐resolution screen.

BC59 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC59 September 15, 2015 7:56 PM

12. When you get to the end of the line, make sure that the
position it’s supposed to be at (from the line_details
part of the readout) is the same as the mouse position.

Then repeat for the other end of the line.

13. Click again to get a new random line and check the end points.

Move the Line
When I say move the line, I really mean make it look like you’re
moving the line. You do this by deleting the old line, then drawing
the new line.

The Canvas widget has a method called delete. You can pass
the constant Tkinter.ALL to it and clear the canvas. Import ALL:

from Tkinter import Frame, Canvas, Label, BOTH, ALL

Add self.canvas.delete(ALL) in the draw_random_line
method before you call create_line.

 self.canvas.delete(ALL)

When you run the code, you should get a single line that bounces
around the canvas as you click. Yeah! Click that mouse! Click it!
Click it!

Show the Points
To click and drag a spline’s control points, you first need some-
thing on the screen to click (and then drag). You need to draw
each control point on the screen. You’re going to do that with a
red circle where each point is.

Tkinter doesn’t have circles, but it does have ovals. A circle is
just a specific sort of oval. You create a circle by calling canvas’s
create_oval method and passing a square bounding box to it.

BC60 Python For Kids For Dummies

9781119093107-bc02.indd BC60 September 15, 2015 7:56 PM

A bounding box for an object is the smallest rectangle that the
object fits into.

You can see one in Figure 2-2.

Make the bounding box by giving it a list with four elements:

✓✓ The first two elements are the x and y coordinates of the
top‐left corner of the bounding box.

✓✓ The last two elements are the x and y coordinates of the
 bottom‐right corner of the bounding box.

Follow these steps:

1. Create a constant called NODE_RADIUS that represents the
radius of the control point. Set it to 3.

NODE_RADIUS = 3

Figure 2-2: A bounding box around a circle.

BC61 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC61 September 15, 2015 7:56 PM

Change the size later if you don’t like it.

2. Add a new method called draw_node.

The method should take two numbers as arguments. x and y
are good to use.

 def draw_node (self, x, y):

3. In the draw_node method, use canvas’s create_oval
method.

That method takes a bounding box as an argument. First, cal-
culate the bounding box. To calculate bounding_box, remem-
ber that draw_node receives two numbers: x and y. Assume
that x and y are in the middle of the circle that you’re drawing.

If that’s the case:

• The left side of the circle is at x‐NODE_RADIUS.

• The right side of the circle is at x+NODE_RADIUS.

• The top of the circle is at y‐NODE_RADIUS. (That’s minus,
because y goes down as you go up the screen.)

• The bottom of the circle is at y+NODE_RADIUS.

 left = x‐NODE_RADIUS

 right = x+NODE_RADIUS

 top = y‐NODE_RADIUS

 bottom = y+NODE_RADIUS

4. Work these out and combine them into a list called
 bounding_box with this order: left, top, right, bottom.

 bounding_box = (left, top, right, bottom)

5. Call canvas’s create_oval method passing bounding_box
as the first argument and add fill="red" as a second
argument.

BC62 Python For Kids For Dummies

9781119093107-bc02.indd BC62 September 15, 2015 7:56 PM

The fill config option sets the background color of the
canvas.

 self.canvas.create_oval(bounding_box, fill="red")

6. In the draw_random_line method, split the variable
point_list into coordinate pairs.

7. For each such pair, call draw_node, passing that pair.

 pair_list = [(x, y), (x1, y1)]

 for x0, y0 in pair_list: # Python will unpack it for you

 self.draw_node(x0, y0)

That looks complex, but it’s not too bad. If you have trouble, use
the debugging techniques from the l33t sp34k3r project and read
the error messages. When I first did this, I swapped the bottom
and right values and got all sorts of weird ovals.

This is my new constant:

NODE_RADIUS = 3

Here’s the new method:

 def draw_node(self, x, y):

 """ Given an x and y coordinate, draw an oval of

 radius NODE_RADIUS, centered at the point (x,y)"""

 left = x‐NODE_RADIUS

 right = x+NODE_RADIUS

 top = y‐NODE_RADIUS

 bottom = y+NODE_RADIUS

 bounding_box = (left, top, right, bottom)

 self.canvas.create_oval(bounding_box, fill="red")

This code is added to the end of draw_random_line:

 pair_list = [(x, y), (x1, y1)]

 for x0, y0 in pair_list: # Python will unpack it for you

 self.draw_node(x0, y0)

BC63 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC63 September 15, 2015 7:56 PM

In this code, pair_list is a list of pairs. It has only two elements
that the for loop runs through. The first is (x,y) — the starting
location of the line — and the second is (x1,y1) — the ending
location of the line. For each of these, the for list unpacks the
pair into two separate numbers, stored in the dummy variables x0
and y0. These are passed to draw_node (which draws it).

Grab and Move the Control Points
To click and drag control points, you’re going to set your line in a
default position. This will help make the code easier to debug.

You know that the events you’re going to get will have x and y
attributes, so make a custom class that mimics (imitates) these
attributes. That way you can treat these points as points rather
than as two numbers. For example, rather than sending x and y as
arguments to a function, you can send a point p.

Some boring set up
Follow these steps:

1. Create a new class called ControlPoint, prior to the defini-
tion of SplineDisplay.

Have its constructor take two arguments — x and y — and have
it assign each of these to an attribute with the same name.

class ControlPoint(object):

 """ A class to hold individual control ControlPoints."""

 def __init__(self, x, y):

 self.x = x

 self.y = y

2. Create three attributes in SplineDisplay’s constructor.
Name them as if they were constants, called POINT_1,
POINT_2, and POINT3.

Instantiate POINT_1 as a ControlPoint with x and y argu-
ments of 100 and 100. Do the same with POINT_2, with

BC64 Python For Kids For Dummies

9781119093107-bc02.indd BC64 September 15, 2015 7:56 PM

arguments of 400 and 500 and POINT_3 as 700 and 200.
Append them, in order, to the control_points attribute.

 self.POINT_1 = ControlPoint(100, 100)

 self.POINT_2 = ControlPoint(400, 500)

 self.POINT_3 = ControlPoint(700, 200)

 self.control_points = [self.POINT_1, self.POINT_2,

self.POINT_3]

3. Change draw_node’s name to draw_control_point and
change it to accept a single instance of ControlPoint (call
it point) as an argument, rather than values x and y.

Change references to x to point.x and references to y to
point.y.

 def draw_control_point(self, point): #if you're gruff just

call it p

 """ Given a ControlPoint point draw an oval of

 radius NODE_RADIUS, centered at the point

(point.x,point.y)"""

 left = point.x‐NODE_RADIUS

 right = point.x+NODE_RADIUS

 top = point.y‐NODE_RADIUS

 bottom = point.y+NODE_RADIUS

 bounding_box = (left, top, right, bottom)

 self.canvas.create_oval(bounding_box, fill="red")

4. Create a new method, called draw_line, that takes a list of
the line’s control points as an argument.

 def draw_line(self, control_points):

 """ Given a list of ControlPoints, draw a line defined

by those

 points. Draw a node at each of those points"""

5. In the new draw_line method, clear the canvas and create
an empty list.

 # Clear the canvas

 self.canvas.delete(ALL)

 # Draw line

 point_list = []

BC65 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC65 September 15, 2015 7:56 PM

6. Iterate through the list of control points that the method
received as an argument.

For each element, append the values of its x and y attributes
(in that order) to the list you just created.

 for p in control_points:

 point_list.append(p.x)

 point_list.append(p.y)

7. Call create_line, passing point_list you generated in
the previous step as the first argument.

 self.canvas.create_line(point_list)

8. Iterate through the list of control points again and call
draw_control_point for each of them.

Do this after you draw the line. Otherwise, the line will appear
above the control points.

 # draw nodes second otherwise line will be on top of nodes

 for p in control_points:

 self.draw_control_point(p)

9. Using the first and last points, set the line_details
attribute.

 point1 = control_points[0]

 point2 = control_points[‐1]

 self.line_details = LINE_DETAILS_FORMAT%(point1.x, point1.y,

 point2.x, point2.y)

10. In SplineDisplay’s constructor, remove the line binding
"<Button‐1>" to draw_random_line.

11. Add a call to draw_line, passing the control_points
attribute:

self.canvas.bind("<Button‐1>", self.draw_random_line)

And, a little later

 self.draw_line(self.control_points)

BC66 Python For Kids For Dummies

9781119093107-bc02.indd BC66 September 15, 2015 7:56 PM

The consolidated changes look like this. First, there is a new class:

class ControlPoint(object):

 """ A class to hold individual control ControlPoints."""

 def __init__(self, x, y):

 self.x = x

 self.y = y

In SplineDisplay the constructor looks like this:

 def __init__(self, parent=None):

 Frame.__init__(self, parent)

 self.pack(fill=BOTH, expand=True)

 self.canvas = Canvas(self)

 self.canvas.config(width=CANVAS_WIDTH, height=CANVAS_HEIGHT)

 self.canvas.pack(fill=BOTH, expand=True)

 fixed_font = tkFont.nametofont("TkFixedFont")

 self.readout = Label(self, text="Readout Label",

font=fixed_font)

 self.readout.pack()

 self.canvas.bind("<Motion>", self.track_mouse_motion)

self.canvas.bind("<Button‐1>", self.draw_random_line)

 self.line_details = ""

 self.POINT_1 = ControlPoint(100, 100)

 self.POINT_2 = ControlPoint(400, 500)

 self.POINT_3 = ControlPoint(700, 200)

 self.control_points = [self.POINT_1, self.POINT_2,

self.POINT_3]

 self.draw_line(self.control_points)

The draw_node method has been replaced by draw_control_
point, which is very similar:

 def draw_control_point(self, point): #if you're gruff

just call it p

 """ Given a ControlPoint point draw an oval of

 radius NODE_RADIUS, centered at the point

(point.x,point.y)"""

 left = point.x‐NODE_RADIUS

 right = point.x+NODE_RADIUS

 top = point.y‐NODE_RADIUS

BC67 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC67 September 15, 2015 7:56 PM

 bottom = point.y+NODE_RADIUS

 bounding_box = (left, top, right, bottom)

 self.canvas.create_oval(bounding_box, fill="red")

Finally, there’s a new method called draw_line:

 def draw_line(self, control_points):

 """ Given a list of ControlPoints, draw a line

defined by those

 points. Draw a node at each of those points"""

 # Clear the canvas

 self.canvas.delete(ALL)

 # Draw line

 point_list = []

 for p in control_points:

 point_list.append(p.x)

 point_list.append(p.y)

 self.canvas.create_line(point_list)

 # draw nodes second otherwise line will be on top of

nodes

 for p in control_points:

 self.draw_control_point(p)

 point1 = control_points[0]

 point2 = control_points[‐1]

 self.line_details = LINE_DETAILS_FORMAT%(point1.x, point1.y,

 point2.x, point2.y)

Look for collisions
 When an event occurs somewhere within the area assigned to a given

object, that’s called a collision. For example, you’re going to check
whether a mouse click event happens when the mouse pointer is over
a control point. That’s an example of a collision. Game programming
uses it all the time, at least in 2D games, to check whether (for example)
the missile hit an alien.

BC68 Python For Kids For Dummies

9781119093107-bc02.indd BC68 September 15, 2015 7:56 PM

You’re checking to see whether the location of an event (in this
case, a mouse click or a mouse motion) collides with a control
point. It works like this: If the mouse is over the control point
when the user clicks it, then the user can drag the control point
and change where the line is drawn. To make the calculations eas-
ier, you’re not going to be exact, you’re just going to be near
enough. You’re going to check for a collision if the mouse click is
within the bounding box around the control point. See Figure 2-3.

You’re going to reuse the <Motion> event to check whether the
mouse has a collision with the two points that make the line.
You’re going to check for collisions within the ControlPoint
class itself. This way you run through all your control points and
ask the control point itself whether it had a collision.

Figure 2-3: Checking for collisions using a bounding box.

BC69 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC69 September 15, 2015 7:56 PM

First, though, you’re going to see what a collision is and when it
occurs by making your control points go BANG!

1. In the ControlPoint constructor, figre out attributes left,
right, top, and bottom.

You can do it the same way you did in the draw_control_
point method.

 self.left = x‐NODE_RADIUS

 self.right = x+NODE_RADIUS

 self.top = y‐NODE_RADIUS

 self.bottom = y+NODE_RADIUS

2. Create a new method in the ControlPoint class called
collide_point, which takes self and event as arguments.

It’s called collide_point because it’s testing whether a colli-
sion has occurred with a single point rather than a line, oval,
or rectangle.

 def collide_point(self, event):

 """ given any object with x and y coordindates

 calculate whether that location (x,y) is within

 the control point's bounding box"""

3. In that method, work out whether the x, y values in the
event correspond to an area within the ControlPoint’s
bounding box.

When you instantiate a ControlPoint, you already calculate
left, right, top, and bottom. Just check whether

• left is less than x

• x is less than right

• top is less than y

• y is less than bottom

BC70 Python For Kids For Dummies

9781119093107-bc02.indd BC70 September 15, 2015 7:56 PM

In the y coordinate, a higher number is lower on the screen.
(It’s confusing, I know). If those are all true, return True.
Otherwise, return False. There’s a shorthand to do this:

 return self.left < event.x < self.right and \

 self.top < event.y < self.bottom

4. Rename the track_mouse_motion method to be
on_mouse_motion.

 def on_mouse_motion(self, event):

 """Update the label to tell user about mouse motion"""

A line binding this method in SplineDisplay’s constructor
also needs to be updated:

 self.canvas.bind("<Motion>", self.on_mouse_motion)

If you have an event named event_name, then the conven-
tional way of naming a callback for the event is
on_event_name.

5. In the on_mouse_motion method, iterate through each con-
trol point, calling its collide_point method and passing
event to that method.

6. If the call to collide_point method returns True, add
BANG! to the end of the readout.

If you want to really challenge yourself, change the color of the
control point that you’ve collided with!

 readout_text = READOUT_FORMAT%(self.line_details,

event.x, event.y)

 for p in self.control_points:

 if p.collide_point(event):

 readout_text = readout_text +" BANG!"

 self.readout.config(text=readout_text)

7. In draw_control_point, delete the calculations and get the
left, right, top, and bottom values.

BC71 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC71 September 15, 2015 7:56 PM

Get them directly from the point itself. They’re now attributes.

 def draw_control_point(self, point): #if you're gruff just

call it p

 """ Given a ControlPoint point draw an oval of

 radius NODE_RADIUS, centered at the point

(point.x,point.y)"""

 bounding_box = (point.left, point.top, point.right,

point.bottom)

 self.canvas.create_oval(bounding_box, fill="red")

The new ControlPoint class looks like this:

class ControlPoint(object):

 """ A class to hold individual control ControlPoints."""

 def __init__(self, x, y):

 self.x = x

 self.y = y

 self.left = x‐NODE_RADIUS

 self.right = x+NODE_RADIUS

 self.top = y‐NODE_RADIUS

 self.bottom = y+NODE_RADIUS

 def collide_point(self, event):

 """ given any object with x and y coordindates

 calculate whether that location (x,y) is within

 the control point's bounding box"""

 return self.left < event.x < self.right and \

 self.top < event.y < self.bottom

The draw_control_point method is now more compact:

 def draw_control_point(self, point): #if you're gruff

just call it p

 """ Given a ControlPoint point draw an oval of

 radius NODE_RADIUS, centered at the point

(point.x,point.y)"""

 bounding_box = (point.left, point.top, point.right, point.

bottom)

 self.canvas.create_oval(bounding_box, fill="red")

BC72 Python For Kids For Dummies

9781119093107-bc02.indd BC72 September 15, 2015 7:56 PM

And code tests for collisions in the renamed on_mouse_motion
callback:

 def on_mouse_motion(self, event):

 """Update the label to tell user about mouse motion"""

 readout_text = READOUT_FORMAT%(self.line_details, event.x,

event.y)

 for p in self.control_points:

 if p.collide_point(event):

 readout_text = readout_text +" BANG!"

 self.readout.config(text=readout_text)

Finally, the line binding on_mouse_motion in SplineDisplay’s
constructor:

 self.canvas.bind("<Motion>", self.on_mouse_motion)

Run the program and move your mouse around. When the mouse
runs over one of the control points, the readout should go BANG!
Make sure it reports collisions when they occur and doesn’t report
collisions when they don’t occur.

To see how the bounding box concept is working, change the
value of NODE_RADIUS to make it much bigger; then re‐run the
code. It’ll be obvious that you’re getting collisions in corners
when the mouse isn’t over the control point. Near enough is good
enough here because it makes the code easier and faster. See
Figure 2-4.

Add click and drag
You’ve clicked and dragged things on a computer before. That’s
what you want to do with the control points. The mouse motion
callback needs to do different things depending on whether you’re
clicking a control point or dragging it.

Whether you’re clicking or dragging is called state information
because it’s information about the current state of the application.
(In this case, the user is clicking or the user is dragging.)

BC73 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC73 September 15, 2015 7:56 PM

This application has two states. The first is the normal state and
the second is dragging. To keep track of the state of the applica-
tion, create some new constants to record the states:

1. Create two new constants: STATE_NORMAL and
STATE_DRAGGING.

Assign them the strings "normal" and "dragging a
 control point", in that order.

You can assign numbers here instead (like 0 and 1). It doesn’t
matter as long as you don’t repeat any of the state identifiers.
That said, I think using strings makes it easier to understand.

STATE_NORMAL = "normal"

STATE_DRAGGING = "dragging a control point"

Figure 2-4: Exploding control points.

BC74 Python For Kids For Dummies

9781119093107-bc02.indd BC74 September 15, 2015 7:56 PM

2. Create a new attribute in SplineDisplay called state.
Set it to STATE_NORMAL.

This attribute records the current state of the application.

3. Create another attribute called dragging_point and set it
to None.

When the application is in the dragging state, it’ll need to keep
track of what control point is actually being dragged. You use
dragging_point to store this.

 self.state = STATE_NORMAL

 self.dragging_point = None

4. Create a new method in SplineDisplay called
on_button_one.

It takes an event as an argument.

 def on_button_one(self, event):

 """ Action depends on state

 If over a control point and state is normal, start

dragging,

 change state

 """

5. In on_button_one, use enumerate to go through all of the
control points and check if there’s a collision with any con-
trol point.

If there is, set the state variable to STATE_DRAGGING and
store the index (the first value returned by enumerate) in the
dragging_point attribute.

You’re saving the location, in the list of control points, of the
point being dragged. You do that so you can replace that entry
with a new one later.

6. You need to break when you find your first collision.

Maybe there are two or more objects that are being collided
with (like if two control points are on top of each other). If you

BC75 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC75 September 15, 2015 7:56 PM

have more than one collision, choose the first one. This choice
is arbitrary.

 for i, cp in enumerate(self.control_points):

 if cp.collide_point(event):

 self.state = STATE_DRAGGING

 self.dragging_point = i

 # this is the index in self.control_points

 break

7. Bind the "<Button‐1>" event to this new method.

I like to bind the button to its callback when I create the call-
back skeleton. I’ve delayed it here so it doesn’t interrupt the
steps describing the callback.

 self.canvas.bind("<Button‐1>", self.on_button_one)

8. Change the on_mouse_motion callback so that if the user is
dragging a control point, the control point gets updated.

To start, comment out the collision‐related code. It was only
there to test that the collision function was working. Keep the
code that updates the readout.

9. In on_mouse_motion, see if the state is STATE_DRAGGING.

If it is, create a new ControlPoint using the event’s x and y
coordinates. Then replace the control point with the new one
you’ve just manufactured.

You can do this because you’ve kept a record of which point
the user is dragging in the on_button_one method. If index
is the index of the point being dragged, and the new
ControlPoint you’ve just instantiated is called new_point,
then you can replace the old point with the new one using the
code self.control_points[index] = new_point.

Your control points are stored in a list. That entry in the list
gets changed as you drag a control point. Then call draw_
line using the new control points.

BC76 Python For Kids For Dummies

9781119093107-bc02.indd BC76 September 15, 2015 7:56 PM

The code for Steps 7 and 8 follows:

 if self.state == STATE_DRAGGING:

 new_point = ControlPoint(event.x, event.y)

 index = self.dragging_point

 self.control_points[index] = new_point

 self.draw_line(self.control_points)

10. In SplineDisplay, create a new method called
on_button_one_release.

 def on_button_one_release(self, event):

 """ Drop a control point that you are dragging """

This callback is called when a button is released. If the user is
dragging a control point at the time, then the application
should stop dragging and leave the control point where the
button is released.

To do this in the on_button_one_release method, see if the
state is STATE_DRAGGING. If not, just return from the callback
because there is nothing to do. Otherwise, set the state to
STATE_NORMAL and set the variable recording the point being
dragged to None.

 if self.state == STATE_DRAGGING:

 self.state = STATE_NORMAL

 self.dragging_point = None

This drops the point (because the code that updates the posi-
tion only works when the state is STATE_DRAGGING). When
you change it to STATE_NORMAL, the application automatically
stops dragging the point. It’s a bit magical, but event‐driven
programming is like that. Take a bit of time to make sure that
this works.

11. Bind the "<ButtonRelease‐1>" event to this new method.

 self.canvas.bind("<ButtonRelease‐1>",

self.on_button_one_release)

12. Delete the draw_random_line.

The consolidated changes from earlier follow.

BC77 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC77 September 15, 2015 7:56 PM

Here are the additions to the Constants section:

STATE_NORMAL = "normal"

STATE_DRAGGING = "dragging a control point"

I added these new attributes of SplineDisplay in its construc-
tor. I added them to the end of the constructor, but I don’t think it
matters a whole lot where in the constructor you put them:

 self.state = STATE_NORMAL

 self.dragging_point = None

My new event bindings. The first has the callback changed to
self.on_mouse_motion, and the other two are new:

 self.canvas.bind("<Motion>", self.on_mouse_motion)

 self.canvas.bind("<Button‐1>", self.on_button_one)

 self.canvas.bind("<ButtonRelease‐1>",

self.on_button_one_release)

The two new callbacks added to SplineDisplay:

 def on_button_one(self, event):

 """ Action depends on state

 If over a control point and state is normal, start dragging,

 change state

 """

 for i, cp in enumerate(self.control_points):

 if cp.collide_point(event):

 self.state = STATE_DRAGGING

 self.dragging_point = i

 # this is the index in self.control_points

 break

 def on_button_one_release(self, event):

 """ Drop a control point that you are dragging """

 if self.state == STATE_DRAGGING:

 self.state = STATE_NORMAL

 self.dragging_point = None

BC78 Python For Kids For Dummies

9781119093107-bc02.indd BC78 September 15, 2015 7:56 PM

This is the revised on_mouse_motion method:

 def on_mouse_motion(self, event):

 """Update the label to tell user about mouse motion"""

for p in self.control_points:

if p.collide_point(event):

readout_text = readout_text +" BANG!"

 if self.state == STATE_DRAGGING:

 new_point = ControlPoint(event.x, event.y)

 index = self.dragging_point

 self.control_points[index] = new_point

 self.draw_line(self.control_points)

 # otherwise, just update the readout

 readout_text = READOUT_FORMAT%(self.line_details, event.x,

event.y)

 readout_text = readout_text + " current state:

%s"%self.state

 self.readout.config(text=readout_text)

Now you should be able to click, drag, and drop the control
points. When you do, the line updates. Woohoo!

You can drag the control points outside the window, but if you
drop them there you won’t get them back.

One of the interesting things about this code is that all the action
happens in response to specific events — mouse clicks and
mouse motion.

Spline That Line!
Straight lines are sooo boring. They’re not awesome looking at all,
like splines are.

In the draw_line method, add the option smooth=True to the
call to create_line.

BC79 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC79 September 15, 2015 7:56 PM

 self.canvas.create_line(point_list, smooth=True)

That’s it. Done. Tkinter does the rest for you. Simple, huh?

You can delete the import random line, since it’s not doing any-
thing anymore. Run it. Now you can click and drag around the
control points and the spline moves with you.

You can make it a little prettier by

✓✓ Changing the canvas background to white (in
SplineDisplay’s constructor):

 self.canvas.config(width=CANVAS_WIDTH,

 height=CANVAS_HEIGHT,

 background="white")

✓✓ Changing the line color to blue and increasing its width a little
(in SplineDisplay’s draw_line method):

 self.canvas.create_line(point_list, smooth=True,

 fill="blue", width=2)

Finally, add more control points. You’re just going to add some
randomly generated ones and it’s pretty easy. For more of a chal-
lenge, change the on_button_one method to drop a control
point where you click (if you’re not clicking to drag).

Here’s some quick code to add some random control points. It
goes in SplineDisplay’s constructor immediately before the
line self.draw_line(self.control_points). It has a magic
number too. See Figure 2-5.

 for i in range(10):

 x = random.randint(0, 800)

 y = random.randint(0, 600)

 random_point = ControlPoint(x, y)

 self.control_points.append(random_point)

BC80 Python For Kids For Dummies

9781119093107-bc02.indd BC80 September 15, 2015 7:56 PM

The Complete Code
Here’s the complete code, including some extra random control
points, a white background, and a blue line two pixels wide.

"""

Spliner.py

Draw and investigate a spline using Tkinter's Canvas

widget

"""

Imports Section

from Tkinter import Frame, Canvas, Label, BOTH, ALL

import tkFont

import random

Constants Section

CANVAS_WIDTH = 800

Figure 2-5: This spline has moveable control points.

BC81 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC81 September 15, 2015 7:56 PM

CANVAS_HEIGHT = 600

READOUT_FORMAT = "%s Mouse pointer at x: %3i y:%3i"

LINE_DETAILS_FORMAT = "Line from (%s,%s) to (%s,%s)"

NODE_RADIUS = 3

STATE_NORMAL = "normal"

STATE_DRAGGING = "dragging a control point"

Class Section

class ControlPoint(object):

 """ A class to hold individual control ControlPoints."""

 def __init__(self, x, y):

 self.x = x

 self.y = y

 self.left = x‐NODE_RADIUS

 self.right = x+NODE_RADIUS

 self.top = y‐NODE_RADIUS

 self.bottom = y+NODE_RADIUS

 def collide_point(self, event):

 """ given any object with x and y coordindates

 calculate whether that location (x,y) is within

 the control point's bounding box"""

 return self.left < event.x < self.right and \

 self.top < event.y < self.bottom

class SplineDisplay(Frame):

 """This class will display the spline"""

 def __init__(self, parent=None):

 Frame.__init__(self, parent)

 self.pack(fill=BOTH, expand=True)

 self.canvas = Canvas(self)

 self.canvas.config(width=CANVAS_WIDTH,

 height=CANVAS_HEIGHT,

 background="white")

 self.canvas.pack(fill=BOTH, expand=True)

 fixed_font = tkFont.nametofont("TkFixedFont")

 self.readout = Label(self, text="Readout Label",

font=fixed_font)

 self.readout.pack()

BC82 Python For Kids For Dummies

9781119093107-bc02.indd BC82 September 15, 2015 7:56 PM

 self.canvas.bind("<Motion>", self.on_mouse_motion)

 self.canvas.bind("<Button‐1>", self.on_button_one)

 self.canvas.bind("<ButtonRelease‐1>", self.on_button_one_

release)

self.canvas.bind("<Button‐1>", self.draw_random_line)

 self.line_details = ""

 self.POINT_1 = ControlPoint(100, 100)

 self.POINT_2 = ControlPoint(400, 500)

 self.POINT_3 = ControlPoint(700, 200)

 self.control_points = [self.POINT_1, self.POINT_2, self.POINT_3]

 for i in range(10):

 x = random.randint(0, 800)

 y = random.randint(0, 600)

 random_point = ControlPoint(x, y)

 self.control_points.append(random_point)

 self.draw_line(self.control_points)

 self.state = STATE_NORMAL

 self.dragging_point = None

 def on_mouse_motion(self, event):

 """Update the label to tell user about mouse motion"""

 if self.state == STATE_DRAGGING:

 new_point = ControlPoint(event.x, event.y)

 index = self.dragging_point

 self.control_points[index] = new_point

 self.draw_line(self.control_points)

 readout_text = READOUT_FORMAT%(self.line_details,

event.x, event.y)

 self.readout.config(text=readout_text)

 def draw_control_point(self, point): #if you're gruff

just call it p

 """ Given a ControlPoint point draw an oval of

 radius NODE_RADIUS, centered at the point

(point.x,point.y)"""

 bounding_box = (point.left, point.top, point.right, point.bottom)

 self.canvas.create_oval(bounding_box, fill="red")

BC83 Bonus Project 2: Spline Drawing Program

9781119093107-bc02.indd BC83 September 15, 2015 7:56 PM

 def draw_line(self, control_points):

 """ Given a list of ControlPoints, draw a line defined by those

 points. Draw a node at each of those points"""

 # Clear the canvas

 self.canvas.delete(ALL)

 # Draw line

 point_list = []

 for p in control_points:

 point_list.append(p.x)

 point_list.append(p.y)

 self.canvas.create_line(point_list, smooth=True,

 fill="blue", width=2)

 # draw nodes second otherwise line will be on top of nodes

 for p in control_points:

 self.draw_control_point(p)

 point1 = control_points[0]

 point2 = control_points[‐1]

 self.line_details = LINE_DETAILS_FORMAT%(point1.x, point1.y,

 point2.x, point2.y)

 def on_button_one(self, event):

 """ Action depends on state

 If over a control point and state is normal, start dragging,

 change state

 """

 for i, cp in enumerate(self.control_points):

 if cp.collide_point(event):

 self.state = STATE_DRAGGING

 self.dragging_point = i

 # this is the index in self.control_points

 break

 def on_button_one_release(self, event):

 """ Drop a control point that you are dragging """

 if self.state == STATE_DRAGGING:

BC84 Python For Kids For Dummies

9781119093107-bc02.indd BC84 September 15, 2015 7:56 PM

 self.state = STATE_NORMAL

 self.dragging_point = None

if __name__ == "__main__":

 display = SplineDisplay(None)

 display.mainloop()

Summary
You did a lot of important stuff:

✓✓ Sized a canvas widget, used the x coordinate to talk about
left‐right location, and used the y coordinate to talk about
up‐down location.

✓✓ Determined what x and y go up to, and that those numbers
are determined by the size of the window.

✓✓ Discovered that a number for x and a number for y can be
used together to identify each and every location within a win-
dow or screen.

✓✓ Used Tkinter event objects.

✓✓ Changed mouse motion events into mouse position info.

✓✓ Reacted to mouse clicks.

✓✓ Detected collisions and used collision detection to grab and
move control points.

✓✓ Tested the form a<x<b.

✓✓ Made friends with the Canvas widget.

✓✓ Drew lines and ovals and discovered how to change their color
with fill.

✓✓ Had a more interesting example of an event‐driven program.

